8 research outputs found

    Robust phase retrieval with the swept approximate message passing (prSAMP) algorithm

    Full text link
    In phase retrieval, the goal is to recover a complex signal from the magnitude of its linear measurements. While many well-known algorithms guarantee deterministic recovery of the unknown signal using i.i.d. random measurement matrices, they suffer serious convergence issues some ill-conditioned matrices. As an example, this happens in optical imagers using binary intensity-only spatial light modulators to shape the input wavefront. The problem of ill-conditioned measurement matrices has also been a topic of interest for compressed sensing researchers during the past decade. In this paper, using recent advances in generic compressed sensing, we propose a new phase retrieval algorithm that well-adopts for both Gaussian i.i.d. and binary matrices using both sparse and dense input signals. This algorithm is also robust to the strong noise levels found in some imaging applications

    Rate-Distortion Analysis of Multiview Coding in a DIBR Framework

    Get PDF
    Depth image based rendering techniques for multiview applications have been recently introduced for efficient view generation at arbitrary camera positions. Encoding rate control has thus to consider both texture and depth data. Due to different structures of depth and texture images and their different roles on the rendered views, distributing the available bit budget between them however requires a careful analysis. Information loss due to texture coding affects the value of pixels in synthesized views while errors in depth information lead to shift in objects or unexpected patterns at their boundaries. In this paper, we address the problem of efficient bit allocation between textures and depth data of multiview video sequences. We adopt a rate-distortion framework based on a simplified model of depth and texture images. Our model preserves the main features of depth and texture images. Unlike most recent solutions, our method permits to avoid rendering at encoding time for distortion estimation so that the encoding complexity is not augmented. In addition to this, our model is independent of the underlying inpainting method that is used at decoder. Experiments confirm our theoretical results and the efficiency of our rate allocation strategy

    Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach

    Full text link
    In this paper, the problem of compressive imaging is addressed using natural randomization by means of a multiply scattering medium. To utilize the medium in this way, its corresponding transmission matrix must be estimated. To calibrate the imager, we use a digital micromirror device (DMD) as a simple, cheap, and high-resolution binary intensity modulator. We propose a phase retrieval algorithm which is well adapted to intensity-only measurements on the camera, and to the input binary intensity patterns, both to estimate the complex transmission matrix as well as image reconstruction. We demonstrate promising experimental results for the proposed algorithm using the MNIST dataset of handwritten digits as example images

    An Analysis and Improvement of the BLS-GSM Denoising Method

    No full text

    Fast Phase Retrieval for High Dimensions: A Block-Based Approach

    No full text
    corecore